Авиабаза =KRoN=
 

Основные разделы

АвиаТОП

Афанасьев И.Б. Р-12 - "Сандаловое дерево", Аэрокосмическая библиотека

Двигатель

#

СОДЕРЖАНИЕ

Двигатель

Ко второй половине 1950–х годов по специальному заданию руководителя ОКБ–456 В.П.Глушко Государственный институт прикладной химии (ГИПХ) разработал процесс промышленного синтеза несимметричного диметилгидразина (НДМГ), относящегося к группе гидразиновых горючих. Гидразин по своей природе ближе всего стоит к аммиаку, а его производные, такие, как гидразин–гидрат, широко применялись в ракетной технике еще со времен Второй мировой войны. НДМГ имел определенные преимущества перед традиционными спиртами или природными углеводородами: он самовоспламенялся при контакте с азотнокислотными окислителями и перекисью водорода. Топливо на его основе имело несколько более высокий удельный импульс, чем керосин. Кроме того, в отдельных случаях при применении катализаторов НДМГ мог служить однокомпонентным топливом (монотопливом) наподобие перекиси водорода, превосходя при этом её по энергетическим характеристикам. В.П.Глушко предвидел, что благодаря своим положительным качествам НДМГ постепенно вытеснит остальные горючие во всех видах ракетной техники.




Двигатель РД-109

НДМГ представляет собой бесцветную гигроскопичную жидкость с аммиачным запахом. По плотности и температуре плавления примерно соответствует керосинам, при обычной температуре и в отсутствии воздуха стабилен, но при температурах выше 350°С разлагается с выделением теплоты и образованием горючих газообразных продуктов; при перегревах в замкнутом пространстве взрывается. Он более стабилен и менее взрывоопасен, чем остальные гидразиновые горючие, устойчив при хранении в герметично закрытых емкостях. Хорошо растворяется в воде, спиртах, углеводородах, аминах и эфирах. Коррозионно малоактивен по отношению ко многим конструкционным материалам.

Из отрицательных свойств НДМГ можно назвать, прежде всего, высокую стоимость получения, достаточно низкую температуру кипения (63°С) и чрезвычайно высокую токсичность.

Полагая начать разработку большого семейства ЖРД на новом горючем, В.П.Глушко понимал, что для широкомасштабного развертывания работ нужна солидная поддержка. Её он надеялся получить от С.П.Королёва, для которого предлагал создать двигатель на топливе «жидкий кислород — НДМГ» для третьей ступени РН, предназначенной для запуска космических аппаратов к Луне и для вывода на орбиту вокруг Земли тяжелого корабля–спутника (первые две ступени — модифицированная Р–7). В.П.Глушко ориентировал заказчика на неслыханно большую величину удельного импульса своего ЖРД — 350 единиц! Ракетчиков, оперирующих к тому времени гораздо меньшими величинами, не могло не вдохновить это число.

Согласно баллистическим расчетам, ракета с оптимальной ступенью с новым ЖРД, позволяла запустить к Луне аппарат массой в два с лишним раза больше, чем носитель с соответствующей кислородно–керосиновой ступенью. (Первоначально С.П.Королёв предлагал создать кислородно–керосиновый ЖРД для третьей ступени носителя на базе рулевой камеры двигателей первых ступеней «семёрки».)

При сравнении с предлагаемым кислородно–керосиновым ЖРД расчетные преимущества двигателя на новом топливе выглядели весьма и весьма рельефно. С.П.Королёв поверил в новое горючее. Этот вариант становился основным, но не единственным: предпочитая свести к минимуму риск, связанный с созданием изделия на малоизученном компоненте топлива, Главный конструктор ОКБ–1 поручил сотрудникам своего двигательного отдела подготовить проект альтернативного кислородно–керосинового ЖРД. 10.02.1958 г. он встретился с руководителем воронежского ОКБ–254 (ныне КБ Химической автоматики) С.А.Косбергом и поручил ему создать резервный двигатель для своего носителя на основе этого проекта с использованием рулевой камеры сгорания «семёрки» конструкции М.В.Мельникова и нового ТНА, разработанного в Воронеже.

В начале 1958 г. в Подлипках началась разработка РН, которая должна была осенью–зимой того же года обеспечить пуски аппаратов к Луне. Работа над проектом носителя была подкреплена соответствующим Постановлением ЦК и Совмина от 20.03.1958 г. Эскизный проект подписан С.П.Королёвым 1.07.1958 г.




РН «Восток» со спутником «Фотон», созданных на базе ИСЗ-фоторазведчика «Зенит-2»

Рассматривая оба двигателя, проектанты ОКБ–1 поняли, что с разрабатываемая ракета будет иметь большие перспективы как носитель. В частности, масса тяжелого спутника, который первоначально задумывался как фоторазведчик, становилась достаточной для проектирования на его базе пилотируемого космического корабля (КК). Исходя из планируемых характеристик ЖРД третьей ступени выбирались параметры КК и РН для выведения его на орбиту. По их расчетам получалось, что ЖРД на новом синтетическом горючем по сравнению с двигателем на керосине позволял на 23% увеличить массу корабля.

Двигатель В.П.Глушко, имевший «фирменное» обозначение РД–109, представлял собой однокамерный ЖРД для верхних ступеней космических ракет. Небывалого значения удельного импульса предполагалось достичь не только применив новое высокоэнергетическое горючее, но и благодаря большому давлению в камере сгорания (свыше 75 ата) и высотному соплу с большой степенью расширения (давление на срезе — 0,1 ата). Компоненты топлива подавались в камеру при помощи ТНА; после отработки на его турбине газ отводился в рулевые сопла, служащие для управления ракетой в полете.

ЖРД состоял из охлаждаемой горючим камеры сгорания с плоской форсуночной головкой и профилированным соплом, ТНА двухвальной схемы с газогенератором, агрегатов автоматики и узлов общей сборки. Для привода турбины ТНА применили газогенератор (ГГ), работающий не на парогазе, как в двигателях прежних конструкций, а на продуктах сгорания основного топлива при большом избытке горючего («сладкий» газ). Однако при предварительных испытаниях из–за чрезмерно малого расхода окислителя выявились серьезные затруднения с надежным запуском, поэтому дальнейшие работы с двухкомпонентным ГГ прекратили. Началась ускоренная разработка и доводка однокомпонентного газогенератора, работающего на принципе термокаталитического разложения НДМГ.




Схема двигателя РД-109

Камера сгорания с высотным соплом являлась первым изделием подобного типа разработки ОКБ–456. Одновременно проверялась возможность ее охлаждения диметилгидразином и исследовались его эксплуатационные свойства. Эти результаты предполагалось впоследствии использовать для разработки мощных двигателей на новом топливе.

Сгорание топлива в РД–109 происходило при более высоких температурах и давлениях, чем в прежних ЖРД, и его камера работала в более тяжелых термодинамических условиях. Положение усугублялось тем, что эффективность системы охлаждения камеры оказалась ниже расчетной.

Известие о трудностях, вставших перед создателями РД–109, С.П.Королёв встретил с пониманием. Он ясно представлял, что В.П.Глушко создает образец ЖРД совершенно нового типа.

В середине 1958 г. отношение В.П.Глушко к своему двигателю заметно изменилось. Из–за больших сложностей в отработке камеры сгорания и газогенератора Валентин Петрович предпочел отступить и переждать. К этому моменту ОКБ–456 начало создание ЖРД для новых ракет — Р–14 и Р–16, работающих на компонентах «азотная кислота — НДМГ». Это топливо оказалось гораздо проще в доводке — оно не содержало криогенных компонентов и сгорало при меньших температурах, чем кислород–НДМГ, благодаря чему камеры новых двигателей работали в менее напряженных условиях. Кроме того, компоненты топлива самовоспламенялись в контакте друг с другом, что значительно упрощало систему запуска.

Всё это приводило к тому, что, несмотря на большую размерность новых двигателей, прогресс с ними был гораздо более очевиден, чем с РД–109. Ссылаясь на большую занятость работами по новым ЖРД, В.П.Глушко не уделял должного внимания своему первенцу. Активная работа над ним замедлилась. Стало очевидно, что надежды на создание ЖРД к осени 1958 г. и его участие в первых пусках аппаратов к Луне беспочвенны… Оставалось уповать на то, что новый ЖРД будет готов к четвертому кварталу 1959 г. с тем, чтобы с его помощью начать пуски тяжелых кораблей–спутников.

Отработка элементов и систем РД–109 продолжалась, но уже совсем в другом темпе. Был проведен большой объем испытаний газогенератора, в ходе которых выявилось, что при температуре ниже 100°С процесс разложения НДМГ прекращается, а при нагреве стенки выше 250°С происходят взрывы в тракте охлаждения ГГ.

Стендовые огневые испытания РД–109 в полной комплектации начались только в январе 1959 г. Они подтвердили возможность создания ЖРД с высокой удельной тягой, работающих на НДМГ. Отработка запуска велась на стенде, оснащенном барокамерой объемом 90м3, обеспечивающей работу двигателя при давлении окружающей среды около 1 мм рт. ст. При огневых испытаниях выбиралась последовательность подачи команд на запуск ЖРД, определялся расход топлива на предварительной ступени, отрабатывались режимы продувок, а также проверялась работоспособность пирозажигательного устройства.

В процессе испытаний было установлено, что зона устойчивой работы двигателя лежит выше предполагавшегося ранее значения, что дало возможность повысить номинальное давление в камере сгорания с 76 до 79 ата.

В результате упорной работы был создан высокооборотный работоспособный ТНА с охлаждаемым редуктором. Доводка агрегата проводилась в условиях, близких к реальным. При стендовых испытаниях первых экземпляров турбины оказалось, что развиваемая ею мощность несколько ниже потребной. Это потребовало проведения специальных мер по ее повышению.

В процессе доводочных испытаний в течение 1959 г. отработали запуск двигателя и проверили совместная работа всех его агрегатов и узлов, причем некоторые из них пришлось значительно доработать. Так, по заданию КБ — заказчика создали и отработали оригинальную конструкцию смесителя для наддува бака горючего. К сожалению, в процессе доводки так и не удалось избавиться от трещин в сварных соединениях лопаток с диском турбины. Был применен более сложный и тяжелый вариант крепления лопаток с помощью замка ёлочного типа. Тем не менее, ресурсные испытания показали, что двигатель РД–109 работоспособен в течение заданного времени.




Турбонасосный агрегат двигателя РД-109

Все бы хорошо, но главные результаты вдохновляли ракетчиков: удельный импульс оказался гораздо ниже заданного значения и едва доходил до 334 единиц. Между тем, даже первые образцы созданного в рекордно короткий срок — всего за девять месяцев! — резервного кислородно–керосинового двигателя РД–0105, получившего в Воронеже «фирменное» название РО–5, имели удельный импульс свыше 316 единиц. Его разработчики не видели особых сложностей на пути повышения в ближайшем будущем этого показателя еще на 10–15 единиц. Естественно, что столь малая разница в удельном импульсе двух конкурирующих двигателей сводила на нет преимущества РД–109 для трехступенчатого носителя: максимальная расчетная масса ПГ (автоматического лунного аппарата) «основного» варианта РН падала до 424 кг, а «дублирующего» варианта возрастала до 373 кг. Дублер становился номером первым — привлекательным и перспективным, а основной вариант рисковал совсем сойти со сцены.

Вообще–то достигнутый удельный импульс не был неожиданностью для сотрудников ОКБ–456. Дело в том, что влияние большого числа неизвестных факторов при проектировании понизило эффективность, надежность и работоспособность камеры сгорания и ТНА по сравнению с расчетными. Требовалось провести дополнительные работы по усовершенствованию уже созданного двигателя. В.П.Глушко стремился доказать всем, что путем незначительных изменений имеющейся конструкции, предварительные значения проектных параметров могут быть даже превзойдены. Взвесив все «за» и «против», С.П.Королёв отказался от использования ЖРД на кислороде–НДМГ для носителя пилотируемого космического корабля, однако обещал В.П.Глушко, что «после получения окончательных характеристик двигателя ОКБ–1 проработает вопрос об использовании этого двигателя на вновь разрабатываемых изделиях и результаты согласует с ОКБ–456».

ЖРД на кислороде–НДМГ с оговоренными в проекте трехступенчатой ракеты параметрами не появился ни в 1958, ни в 1959 году. В начале 1960 г. работы по РД–109 прекратили в связи с началом разработки более совершенного двигателя РД–119.




Двигатель РД-119

Новый ЖРД отличался от РД–109 существенно повышенной удельной тягой, (высотность сопла увеличена более чем в полтора раза, процесс смесеобразования в камере улучшен), а также значительно меньшей массой и большей надежностью. В конструкцию камеры РД–119 внесли ряд кардинальных изменений, направленных на улучшение ее энергомассовых характеристик, улучшили охлаждение внутренней стенки камеры, создав двухщелевой пояс дополнительного завесного охлаждения; отработана новая форсуночная головка, повысившая устойчивость рабочего процесса и обеспечившая большую полноту сгорания компонентов топлива. Эти мероприятия позволили получить наивысший для своего времени удельный импульс тяги в пустоте (352 единицы). При этом вследствие выбора рационального профиля сверхзвуковой части сопла, а также благодаря широкому использованию в конструкции камеры титановых сплавов удалось, несмотря на значительное увеличение выходного диаметра сопла, несколько уменьшить массу камеры сгорания.




Камера сгорания двигателя РД-119

ТНА двигателя РД–119 был выполнен по одновальной схеме. Благодаря упрощению агрегата и улучшению его характеристик удалось существенно снизить расход газа на привод турбины и массу ТНА. Газогенератор двигателя имел неохлаждаемый корпус. Для повышения эффективности системы управления полетом в первые секунды работы РД–119, также, как и РД–109, предусматривался перепуск газа из газогенератора в рулевые сопла, минуя турбину. Значительное повышение надежности двигателя достигалось благодаря форсуночной головке, обеспечившей устойчивый рабочий процесс в камере сгорания, а также за счет введения сварных соединений в турбине и газогенераторе вместо фланцевых и отработкой технологического процесса изготовления узлов и агрегатов.

Для контроля качества каждый двигатель РД–119 испытывался на стенде по новой методике: путем контрольного прожига продолжительностью 150 сек и выборочного партионного испытания на ресурс продолжительностью 260 сек. Новый ЖРД разрабатывался в период 1960–1963 гг., в 1963 г. прошел чистовые доводочные испытания и был принят в серийное производство. Однако еще до этого момента, в 1962 г. началась его летная судьба.

Как можно понять, в этот момент начался новый этап в жизни «химкинского мотора». Однако, она уже не была связана с ОКБ С.П.Королёва. РД–119 только–только шел на стенд, а воронежский РО–5 уже успешно испытывался в полете на трехступенчатом варианте «семёрки» при запуске первых «лунников». Следующий шаг этого носителя — ракета для пилотируемого корабля–спутника.

Двигатель РД–119 уже соответствовал требованиям, поставленным в проекте носителя для корабля, однако все же оказался не у дел.

Как ни доказывал В.П.Глушко его преимущества перед кислородно–керосиновым собратом, С.П.Королёв оставался непреклонен. Возможно, он думал: «Зачем нам новый, пусть перспективный двигатель? Это же кот в мешке. У нас уже есть надежный мотор, который хорошо проявил себя. Да к тому же еще не известно, как поведет себя новый компонент в эксплуатации. А с керосином у нас давняя дружба. Да и готовый стартовый комплекс модернизировать практически не надо...» Однако, главное, представляется, не в этом: двигатель РД–0109 (РО–7) разработки С.А.Косберга (усовершенствованный вариант РО–5) уже имел удельный импульс 326 единиц. Преимущества же РД–119 были незначительными. А такие недостатки, как высокая токсичность НДМГ и его паров, большая стоимость горючего, а также низкая температура его кипения, перевешивали.




Кислородно-керосиновый двигатель РД-0109

Так, должно быть, думал С.П.Королёв, принимая решение отказаться от НДМГ в пользу керосина на своей ракете для полета человека в космос. Правильный ли он сделал вывод? С высот сегодняшних совершенно очевидно, что да. За исключением возможности создания однокомпонентного газогенератора, ЖРД на топливе кислород–НДМГ практически не имеет преимуществ перед аналогичным по конструктивным параметрам (при одинаковых давлении в камере сгорания и степени расширения сопла) двигателем на кислороде–керосине. Недостатки же его очевидны.

После отказа С.П.Королёва от химкинского двигателя В.П.Глушко, конечно же, не пришел в отчаяние: не все разрабатываемые ЖРД шли в серийное производство. Однако, слишком много сил и времени ушло на его создание. На одном из совместных совещаний по отрасли Валентин Петрович предложил М.К.Янгелю РД–119. Михаил Кузьмич обещал подумать.

Copyright © Balancer 1997 — 2024
Создано 18.04.2024
Связь с владельцами и администрацией сайта: anonisimov@gmail.com, rwasp1957@yandex.ru и admin@balancer.ru.